
 را شــرط لازم در ساختارهالى آموزش رياضى دانـي دانسته و تنها راه آموزش اســتدلال و اثباتهانـاى رياضى را ا از

 رويكرد، يك انتـزاع زود هنكام و بـى المورد در آموزش مدر سهاى اســت و براى مثال، آموزش اعدان انداد حقيقى

 دبير ســتانى، باعـث اتلاف وقت و ســـرمايه نظامهاى الـى آموزشى مىدانست.

چرايیى و چیيستى اصول موضوع

 مجموعــان از گزار مهاى درســت اســت كه خواص

چچكيده

تدريس اصول موضوع در برخى از مدارس كشور،
امــرى رايج و متداول اسـت، البته/ اين /مر همواره با
 برای دانشآموزان متوسطه مفيد و قابل فهمر /ست؟ آموزش اعداد حقيقى با رويكرد اصول موضوعى يكى

 آموزش حذف شـــد ولى همحچنان در مدارس خاص آل توسط معلمان تجربه مىشود.

$$
\begin{aligned}
& \text { كليدوازههــا: رويكــرد اصل موضوعـى، دوره } \\
& \text { رياضيات جديد، رياضى دبير ستانى }
\end{aligned}
$$

قضيه بيان كرد. ولى مشـكل اساسى در پذيرش اين روش آن اســت كه كدام شــئ را با بهعـــوان پاعبارت
 اوليه< بايد پذيرفت؟ خط مشـى اساسى آن است است كه عبارت هاى تعريفنشدنى و اصول اوليا اوليه نبايد منجر به
 بتوان آن نظرئَ علمى را تأسيس و كَ كسترش داد داد.
 حنين توصيف شود كه اثبات يك قضيه دي در يك نظا نظام استنتاجى، نشان دادن اين موضوع است كه آن آن قضيه،

 باشــند كه بتوانيم درستى آنها إنا را بيذيريم و و نيازمند

 همحنين، اصول موضوع بايد تمام (كامل) باشند يعنى آنى
 رعايت صرفهجويى نيز مطلوب است كه اصو اصول موضوع، مسـتقل از هم باشند، يعنى هيـيّيك از از اصل ها نتيجئ منطقى ديگَر اصول نباشد (كورانت و رابينز، 1990).

اصول موضوع در رياضى
 دارد، در حدود سىصد سال قبل از ميلاد، اقليدس با

 دو طرف آن به يكى فاصله اســت

 تعريف كنيم، مجبوريم بهـ اشياى ديگرى اسيا استناد كنيم

 تسلسل مى شود كه در نهايت تعرئ تعريف شئ مورد نظر نظر،

 تعريف شده است و در اثبات يك گزار ه، به چهـ اصولى انى

 شود كه اين امر مطلوب نيست. براى حل اي اين مشكل

 دسـت يافتهاند، آن اســت كا كه تعداد محدوردى از از اين

 درستى كه نتيجأ منطقى اصول اوليه است، بهعنوان

موضوعى داشــت و بر منطــق و اثبات، تأكيد ويرّهاى

 مدر سهای، حمايت نمى كنـند.

 اهمميت دادن به روشهاى اصل موضوعى دري در آموزش رياضيــات دانشــعاهى و رياضيات تحقيقـى، كا كافى نيست. وى ســه دليل اساسى را ابرای ضروروت وريا وجود روش اصول موضوعى در آموزش رياضيات دبيرستانى ارائه كرد:

- انتظــار مـــروود دانشآموزان دبيرســتانى، بها رياضياتى مجهز شوند كه فراتر از رياضيات مقدماتى آتى اســت كه بهترين مثال آن، اعداد حقيقى اســت كهـ

 حقيقى در روش آموزش اصل موضوعى به دانشآموز آموز
 روشهاى ديگَر، نمىتوان به آن دست يافي يافت. علاوهبر

 است. اصول موضوع به دانشا آموزان اطمينان مىدهد
 موضوع است و قضيهها بايد از اين اصول تبا تبعيت كنند و با آنها ساز كار باشند.
- تبديل شـهود به اثبات رياضى اهميت زيادى دارد.

 موضوعـى براى رياضيات محــض، هيج تضادى براى الى

نتارش كتاب 》اصول" در هندسه، بنيادى را بنا نهاد

 مفاهيم بايد ابتدا تعريف شوند و وناكّزير نياز مند وند وجود مفاهيم تعريفنشدنى است، كه وجود آنـو آنها را را نيز بايد بايد

 بود. البته ديويد هيلبرت به سفارش كلاين، در الوا باخر قرن نوزدهم، با نوشــتن كتاب 》
 داد. پيـش از آن نيز رياضى ردانــان متعدنى با تا تغيير دادن اصــل پنجم از اصول اقليدس، به هندســـهـهاى آلى

ناقليدسى متفاوتى دست يافتند.

 كتاب اصول پديد آمده يا عرضه شده است، است، ولى تأثير
 اصول بهصورت الكوى ثابت دقيق در ريا رياضيات در آمده تا جايى كه كاهى فيلســوفانى در حوزئ اخلاق الان مانند

 و هجدهم آغاز شــد و از آن پس، روش اصل مـر موضوع

 "منطق رياضى" بود (كورانت و رابينز، آنـ، 199ه).

اصول موضوع در آموزش رياضى

 آغاز شد و بين سالهاى

 تأكيد بسيارى بر رياضيات بهعنوان يكى ساختار اصل

به دليل پيحّيده
بودن ساختار تفكر بشر، امكان ندارد كه آن را با يك دستگان اصل موضوعى رياضى وار، مدلسازى مونى كنيم. اصول ذهنى افراد، با سازو كار هاى
 تغيير است و همين تغيير است كه موجب خلاقيت مى شود

نمىشــود و چنين روندى، بيشــتر از آنكه يك قاعده

 توليد رياضى نيســتند، بلكه الثــــر توليدات رياضـي

 اما چنين كارى از يك دانشآموز معمولى برنمى آيد آيد.
 دانشآموزان نقشــى در توليد رياضى نخـواهن اهند داشت

 مستقيم و بدون اشتباه، به قضيهما مى مى سند. با تصا تصور چنین ذهن هاى دسترسىنايذيرى، دانشآموز ممكن
 از كلاين، 19VV).
 تدريس رياضى، ممكن اســت كه دانشا آموزان، لزو الزي وجود اصول را احســاس نكنـند و آن ها را را موضوعاتى المى

 اين در حالى اســت كه در يكـ دستگاه اصل ماضي موضوع،

 سويى ديگر، ، قضيههاى اوليهاى همه، كه براى آن هما بها

استفاده از رويكرد حل مسئله در رياضى ندارد. ولى با

 رويكرد به برنامهٔ رياضى مدر سهاىي، استفاده از شـر شهود
 استفاده از رويكرد اصل موضوعى غلبه يافت (قدكساز

نقدهايى بر آموزش رياضى با رويكرد

 اصل موضوعىاصر حالى كــهـه بــــيارى از معلمان و آموزشـــــران

 رياضى براى آموزش مدر سهایى، وارد كر اردند. در ار اينجا
 افراد بر اين رويكر آموزشى وارد شده است، پرداخته

مى شود.

 با رياضيات، جهرء نادرســتى از آن آن بــه دانشا آموزان
 رياضى نيست. نتاهى به تاريخ رياضى رياضى نشان مىدهد كه دانش جديــد در رياضى، معمولاً با با اصول موضوعِ از قبل تعيين شــده و استخراج قضاياى جديد، توليد
 فكر كنند، بهتر اســت به آن آها ياد بدهيم چتگونه فكر كنـنــد كه اين به معناى توجه بيشــــتر بـــه وجه دوم آموزش يعنى روش تفكر در آموزش مدرسها آن اسه است. در همين راســتا، جونــز ((الـا
 با اســتفاده از شواهد موجود اســت و و به اعتقاد وىى،

 دفاع كند.

 و قابــل توســعه مىدانند و بعضى از آنــان، به وجود برنامههاى متنوعى كه بــراى آموزش روش تفكر در نظامهاى آموزشــى مختلف طراحى شـــدهاند، اشاره كردهاند.
در ايــن مقالــه، بــا پذيرفتــن اين موضــوع كه روش تفكــر قابل آموزش اســت، بـــهـ رابطأ بين فهمه ســاختارهاى اصل موضوعى و توســعأ توانايى روش
تفكر مى یردازيم.

فهمر ساختار هاى اصل موضوعى

 »"تعريفها"، »اصول" و »قواعد استنتاج" مىىاند كه هر كدام در تقويت تفكر منطقى، نقشى عمده دارند.

الف) مؤلفه اول: مفاهيم اوليه يا تعريف

نشدنى

 معنى يا معانى يك كلمه است كه محدودهٔ كاربرد آن
 مؤلفههاى اصلى تفكر علمى، منطقى و نقادانه است و لزوم وجود آن در تمامى علوم، از علوم رياضى ترفـى

همان اندازه بديهى بهنظر مىرسند، بايد اثبات شوند. همرچنـيــنـ، در رويكرد اصل موضوعى، براى رســـيدن

 معمولاً راههايى طولانى وجود دارد كه پیميودن آنهان،
 يكى ديگر از نقدهاى آموزشى كه بر اين رويكرد
 انتخاب اصول موضوع و تعر يفهاى اوليه نداشن انته و آن آن را موضوعى تمام شده مى بينند، رياضيات را موضوعى خشــن و انعطافناپذير مىيابند كه خلاقيت در آن، نقشــى ندارد. با چنين احساسى نســـبت به رياضى،
 كافى، به يادگيــرى طوطىوار و حفظ كردن اصلهانها
 البته لازم به يادآورى اســت كـــــهـه اين نقدها طراحى برنامه درســى رياضيات مدر الـا رياضى با رويكرد اصل موضوعى مطرح در شدند. در غير اين صورت، دستگاههاى اصل موضوعى بهعنوان يك دست آورد عالى تفكر بشرى، بهمنظور نظا دنامنـد تفكر است. به همين دليل، به نظر مىرسد كه رور رويكرد

 خسروشاهى،

روش تفكر

شافرســمن (1991) معتقد است هر آموزشى دو

 تفكر اســت كه بهطور مرسوم و بهعنوان اولين هدف آن

 اســت، چنين آموزشــى - يعنى دادن اطلاعات تازه و طبقهبندى شده در شرايطى كه در آينده، به سرعت اطلاعات ديگرى جايگزينشان خواهند شد به اين دليل، شافرســمن ((1991) توصيه مى كند كـد

چییز « انجام نمىشود. براى استنتاج حكم , A از حكم A A_{r}
 آن نتيجه شده باشد و ... اين روند، همين گونه ادامه مى يابد. به اين ترتيب با زنجيرى از گزار مها مانند: $\cdots \rightarrow A_{i+1} \rightarrow A_{i} \rightarrow \cdots \rightarrow A_{r} \rightarrow A_{r} \rightarrow A_{1}$
 شده است. اما اين زنجير تا كجا ادامه دار د؟ نامتناهى

 گزار مها مثل A

$$
\mathrm{A}_{r} \rightarrow \mathrm{~A}_{\psi} \rightarrow \mathrm{A}_{r} \rightarrow \mathrm{~A}_{r}
$$

حالت ديگر اين اســت كه ايــن زنجير به الى الى منتمهى شود كه درستى آن را بدون اثبات پذير آيرفتهايم.

 موضــوع خاص خود را دارد. اصولى كه با تغيير آنها آنا
 توليد شده در آن، با قبل متفاوت خواهد بود.

 نمىتواند شــخصى را كه از درون شيشـــهاى بـا به رنگ صورتــى به بيــرون مىنتگرد متقاعد كنــــد كه جهان صورتى نيسـت " و منشأ بســـيارى از سوء تفاهمرها را تفــاوت باور ها، تفاوت چار چوب فكــــــــــا افراد با يكديگر يــا متفاوت بودن اصول پذيرفته شــده توســط آنهـا

 بيــرون را نگاه مىكنـــد، بداند ديگرى جهـا
 متقاعد كردن او، از راهحلهایى هوشـــمندانهترى بهره
خواهد برد.

در هــر صورت، ضرورى اســت كه بـــه اين نكته
 تفكر بشـر، امكان ندارد كه آن را با يك دستگاه اصل

كه در توانايى روش تفكر افراد جامعه ديده مىشــود، مربــوط به عدم دقت در تعريـــف وازهمها مى داند و آنـ آن را از دوجنبه بررســـى كرده است؛ يكـى اين كه از يكـ متفكر انتظار مىرود نســبـت بـــه تعريف دقيق ورد وازـهـها

 معناسـت كه مفهوم الف را توســط ب ب و مفهوم ب را را توسـط الف تعريف نكنيم. مثلاً اگر بگَوييم شجاعت
 بىحاصل افتادهايم. براى رفع اين مشكل، به مفاهيم
 مفاهيم را با اســتفاده از آنها تعريف كنيم. بنـابـابراين، يــى متفكر نقــاد، علاوهبر اين كه نســبت به تعريف وازثهها و مفاهيم حســـاس اســتـ، لزوم وجود مفاهيم اوليه و تعريفنشدنى را نيز درك مى كـند.

ب) مؤلفه دوم: تعريفها

 فاوست (1 () براى شناخت تأثير يك روش جديد تدريس هندســـه در دبيرســـتان انجام داد، موفق شد مهارتهــاى تفكر نقادانه و توانايــى تجزيه و تحليل دانش آموزان را حتى در زمينههاى غير ريا داضىى، ارتقا دهد. يكى از كارهايى كه وى انجام داد، حساس كردن دانش آموزان نســبت به تعريفهاى دقيق، با شروع از
 دانش آموزان را در گيـــر فعاليتهاى گروهى كرد و و از
 عالى" و »رستوران" را كه در زندگى روزمره از آنها
 مفهوم تعريف، ملزومات و كاركردهاى آن آشنا شوند.

پ) مؤلفه سوم: اصول موضوع

 اصــل موضوعى را مجموعهاى از اصول مىداند و ابراز
 دســتخاههاى اصل موضوعى ممكن است فاقد يكـ انـ يا چند تا از اين مؤلفهها باشــند، ولى هر ســــاختار اصل موضوعى، با وجود اصول، معنىدار اســتـت همچچنـين،
 اســتدلال استنتاجى است، اما اســتنتاج روى ״هييج

موضوعى رياضىوار، مدلســازى كنيم. اصول ذهنى افراد، با ســازوكار هاى پيحيديداى در حا حال تغيير است
 دوبونو (199Y) با تأكيــد بر تفكر خلاق، اعتقاد دارد دارد
 از اصل شــروع كنيم، تنها از طريق آن آن اصل، موقعيت ,را در كى مى كنيم و اين مسئله، باعث ناديد انـيده انتاشتن حالتهاى ممكن ديگِر مى شـــود و و خلاقيت را ا از بين

 بيشترى پيدا مى كنيه.

ت) مؤلفه چهارم: قوانين استنتاج

از قواعد منطق مرتبئ اول كلاسـيـك براى اســــتنتاج استفاده مى شود كه مدت ها، بهعنوان يك مارئ مادئ در سىى
 قوانين اســتنتاج، در تفكر نقادانه نيز كاربر در وسيعى

 نمىتوانند اين قوانين را دا زندگى ريانى روزمرئ خود به كار

 كتاب خود با عنوان »ايايه و اساس تفكر نقادانهـ هِ علاوه

 آنها، تنها يك وجه توانايى استدلال استنتاجى است است استا

 دسـتورزى كـند. اما مشـــكل وقتى ديده مى شــــود

 تبديل مســائل رياضى كه به زبان درد دقيق ريان رياضى بيان نشدهاند، نيز وجود دارد.
 رويكرداصول موضوعى، يادكيريمدل مسازى، نمادكذارى

Axiomatisation in Mathematics Teaching. Originally Published in 1986 Research Unit for Mathematics Education (RUMEUS) University of Stellenbosch, South Africa.
4. Esty, W., (2011). The Language of Mathematics. Retrieved on 06/12/11 from: http:// www.augustusmath.hypermath.net
5. Hanna,Gila. (1983). Rigorous Proof in Mathematics Education. The Ontario Institute for Studies in Education. Printed in Canada.
6. Kristen N. Bieda, (2010), Enacting Proof-Related Tasks in Middle School Mathematics: Challenges and Opportunities. Michigan State University. Journal for Research in Mathematics Education 2010, Vol. 41, No. 4, 351-382.
7. Jones,Royce P. (2001). Foundations of Critical

Thinking. Harcourt College Publishers.Printed in the United States of America.
8. Lane, Erica. (2004). The Nature of Proof in Today's Classroom. The Montana Mathematics
Enthusiast (TMME). vol. 1, No. 2 (October 2004). pp. 58.
9. Rubenstein, R.N. \& Thompson, D.R., (2001). Learning Mathematical Symbolism: Challenges and Instructional Strategies. Mathematics Teacher (94), 4, Reston, VA: NCTM.
10. Suppes, P. (1965). The axiomatic method in high school mathematics. In The Conference Board of The Mathematical Sciences, The role of axiomatics and problem solving in mathematics (pp.69-76). Boston: Ginn.
 اســتدلال رياضى و اثبات. ترجمه: جــواد حاجى اجـابايايى. تروه

 انتقادى. ترجمه و تلخيص: پروانه زاهدى الفر. مجله رشد آم آموزش

 آموزشوپرورش.
 چیيست؟ ويراست دوم: يان استيوارت. ترجمه: سيامكى كاظمى (ا) (1ヶVQ). نشر نی.

 برنامهر يزى آموزشى، وزارت آموزشويرورشی.

دورهٔ متوسطه، در دورهٔ رياضيات جديد، واكنشههاى تندى درپی داشــت. بهدنبال اين واكنشهـا در در اغلب
 از آموزش متوسـطهه حذف ترديد، ولى جنجالى زيادى را بهدنبال خود داشت، و طرفداران و و منتقد
 با وجود چالشها و ونظرات منتقدانه آنه نسبت آموزش
 موضوعـى با ارزش و بهعنوان يكى از وجوه گران بهجاى رياضى، هميشــهـ مورد توجه بوده اســـتـ. آنحچه كه در در اين مقاله بدان پرداخته شـــن، مى تواند هشدارى برا براى علاقمندان به اين رويكرد باشد كه به وجونه
 و بستر آموزش مدرسهاى، بلكه بهعنوان ظرفيتى براى تقويت پرورش تفكر نقادانه در دانشآموزان سالهانها آخر دبيرستان، در نظر گرفته شود.

״ینوشتها

1. P Suppes
2. De Villiers
3. Grundlagen der Geometrie
4. Ethica, more geometrico demonstrata
5. Clements
6. Ellerton
7. Freudenthal
8. Hersh
9. Human
10. Kline
11. Fischbein
12. Lakatos
13. Van Hiele
14. Circular Definition
15. Lane
16. Esty
17. Bell, A.W., Costello, J. \& Kuchemann, D.E.

منابع

1. Bell, A.W., Costello, J. \& Kuchemann, D.E., (1983). A Review of Research in Mathematical Education; Part A: Research on Learning and Teaching. Windsor, Berks: NFER-Nelson Publishing Coy Ltd.
2. Clements, M. A. \& Ellerton, Nerida F. (1996).

Mathematics Education Research: Past, Present
and Future. Unesco Principal Office for Asia and Pacific, Bangkok, Thailand.
3. De Villirers, Micheal. (1986). The Role of

